Anonymous
Guest
Anonymous
Guest
Alzheimer's disease is a chronic neurodegenerative disease that most often begins in people over 65 years of age. Usually it starts slowly and continues to worsen over time until the sufferer succumbs to an increasing loss of memory, bodily functions and, eventually, death. Research has shown that there is an association with Alzheimer's and the accumulation of plaques that affect the neuronal connections in the brain. Now researchers at the University of Queensland have discovered a new way to remove these toxic plaques using a non-invasive form of ultrasound therapy.
Amyloid-β (Aβ) peptide – composed of some 36 to 43 amino acids – has been the plaque associated with the development and progression of Alzheimer’s disease for some time now. As such, some research into removing this toxic substance from human brains has been conducted, but almost invariably requires invasive pharmaceutical intervention which is far from completely effective.
The University of Queensland research, on the other hand, purports to offer a potential nonpharmacological approach for removing Aβ plaque. In support of this, the researchers claim to have restored memory function in the brain of a mouse that had Aβ deposited in its brain and displayed Alzheimer's symptoms.
To achieve this, the researchers used the application of multiple iterations of scanning ultrasound to the mouse brain to remove Aβ, and without requiring the use of any additional chemical agents, such as an anti-Aβ antibody. The researchers say that microloglial cells (cells that act as the main form of immune defense in the central nervous system) were activated by the high-frequncy sound waves generated by the ultrasonic equipment and consumed the Aβ plaques.
"This treatment restored memory function to the same level of normal healthy mice," says Professor Jürgen Götz, founding director and researcher at the University of Queensland's Brain Institute. "We’re also working on seeing whether this method clears toxic protein aggregates in neurodegenerative diseases other than Alzheimer’s and whether this also restores executive functions, including decision-making and motor control."
(note to BOD--- yeah, you think it's like cholesterol and yeah something like lipitor for amyloids will do the job but that misses some really simple and critical concepts -- save yourself several billion dollars next time, okay?)
Amyloid-β (Aβ) peptide – composed of some 36 to 43 amino acids – has been the plaque associated with the development and progression of Alzheimer’s disease for some time now. As such, some research into removing this toxic substance from human brains has been conducted, but almost invariably requires invasive pharmaceutical intervention which is far from completely effective.
The University of Queensland research, on the other hand, purports to offer a potential nonpharmacological approach for removing Aβ plaque. In support of this, the researchers claim to have restored memory function in the brain of a mouse that had Aβ deposited in its brain and displayed Alzheimer's symptoms.
To achieve this, the researchers used the application of multiple iterations of scanning ultrasound to the mouse brain to remove Aβ, and without requiring the use of any additional chemical agents, such as an anti-Aβ antibody. The researchers say that microloglial cells (cells that act as the main form of immune defense in the central nervous system) were activated by the high-frequncy sound waves generated by the ultrasonic equipment and consumed the Aβ plaques.
"This treatment restored memory function to the same level of normal healthy mice," says Professor Jürgen Götz, founding director and researcher at the University of Queensland's Brain Institute. "We’re also working on seeing whether this method clears toxic protein aggregates in neurodegenerative diseases other than Alzheimer’s and whether this also restores executive functions, including decision-making and motor control."
(note to BOD--- yeah, you think it's like cholesterol and yeah something like lipitor for amyloids will do the job but that misses some really simple and critical concepts -- save yourself several billion dollars next time, okay?)